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Abstract

Identification of patient-specific scar and fibrosis is a
critical step in the personalization of cardiac computa-
tional models. Late gadolinium enhanced cardiac mag-
netic resonance imaging (LGE-cMRI) is often used to iden-
tify patient anatomy, as well as tissue fibrosis and scar.
Automated methods to identify scar from LGE-cMRI ex-
ist. Still, there is no clear consensus as to which is best in
the context of patient-specific computational modeling of
atrial fibrillation. There has been no substantial investi-
gation into the effects that variability in scar may have on
downstream patient-specific simulations. This study com-
pares the distribution of scar patterns generated via auto-
mated LGE-cMRI analysis alongside human-guided scar
identification. We assess the effects each identified scar
pattern has on downstream computational modeling out-
puts by comparing the number of stable re-entrant arrhyth-
mias induced In Silico in atrial fibrillation. We find both
substantial disagreement between scar patterns identified
via automated and human-guided methods, as well as sen-
sitivity in the arrhythmia simulation outcomes across scar
patterns. These results highlight the sensitivity of such
computational models to these input parameters and en-
force the need for robust personalization tools in the car-
diac modeling field.

1. Introduction

Identification of cardiac tissue properties from late
gadolinium enhanced cardiac magnetic resonance imag-
ing (LGE-cMRI) is an established field of study that is

heavily leveraged in the formulation of cardiac compu-
tational models.[1, 2] Several methods exist to set LGE-
cMRI thresholds for identifying tissue properties such as
scar automatically.[3–6] It is imperative to understand how
differences in these upstream decisions–what LGE thresh-
old to use when building a model–affect downstream out-
puts such as simulations of arrhythmogenesis. In this
study, we will focus specifically on LGE-based scar iden-
tification for use in cardiac computational models.

Several methods have been described to identify scar tis-
sue from LGE-cMRI, including image intensity ratio (IIR),
standard deviation methods based on myocardial wall in-
tensity (STD-wall) or blood pool intensity (STD-bp), and
machine learning approaches.[3–7] Each method proposes
a different ultimate threshold for scar in any given LGE-
cMRI, leading to different scar patterns throughout the
atria. This may also lead to different results from patient-
specific computational model simulations. [2, 8] Auto-
mated methods seek to overcome limitations inherent to
LGE-cMRI, and eschew human-mediated threshold selec-
tion, a reasonable choice to avoid human-induced biases.
However, such approaches forgo the human ability to inte-
grate supplemental information. For example, the location
of ablation lesions from electro-anatomical mapping may
guide a human-selected scar threshold in ways that other
automated methods cannot easily incorporate.

In this study, we compared automated and human-
guided left atrial scar identification methods in terms of
both the distribution of scar tissue identified and the result-
ing computational modeling differences. We found that
not only do automated methods differ substantially from
humans in the identified scar distributions, but also that
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each method yields substantially different simulation out-
comes in terms of arrhythmogenic potential in simulated
atria.

Table 1: Model parameter values. Target conductivities in the longitu-
dinal σl, off axis (sheet and normal) σO directions given in m/s. Initial
un-tuned intracellular conductivities (Longitudinal: giL, off-axis (sheet
and normal): giO) are given in S/m. Tuning was performed on each
mesh. Ionic conductivities given as factors[1] times the baseline values
in the Courtemanche model.[9]

Parameter Healthy Tissue Fibrotic Tissue
CVl (m/s) 0.8 0.32
CVO(m/s) 0.4 0.16

giL 0.4 0.253
giO 0.107 0.0677
GKr 1.6 1.6
GNa 2 1.2
GK1 0.8 0.4
Gto 0.5 0.5

factorGKur 0.5 0.5
GCal 0.3 0.15

2. Methods

In this project we pursued two sub studies: 1) compari-
son of scar identification be different methods, and 2) com-
parison of simulated arrhythmogeneis using the identified
scar distributions.
Model Generation and Arrhythmia Simulation: LGE-
cMRI for 50 post-first-time atrial fibrillation left atrial
radiofrequency ablation patients were collected from the
University of Utah health record systems. Left atrial
anatomy was identified using a combination of Seg3D
(www.seg3d.org) and the automated pipeline CardioTwin
(NumeriCor GmbH, Graz, Austria). Volumetric left atrial
computational models (complete with rule-based fibers
and universal atrial coordinates) were constructed at a tar-
get mesh resolution of both 250 µM and 750 µM average
edge length as described previously [1, 10, 11]. Two sepa-
rate mesh resolutions were produced to meet the needs of
two sub studies: scar identification and simulation. During
scar identification by human observers, the coarser mesh
(750 µM) was used to reduce the computational demand
of visualizing LGE-cMRI intensity and scar distributions
in real time across multiple subjects. Subsequent compu-
tational modeling used a finer mesh (250 µM) to ensure ac-
curacy of the simulations. Simulation of atrial electrophys-
iology was performed using the open-source simulation
package openCARP via the monodomain formulation.[12]
Ionic model and tissue parameters were prescribed ac-
cording to table 1 as ratios of the original Courtemanche
model. Iterative tuning of conductivities was used to
achieve mesh-specific target conduction velocities shown

in table 1.[1] Regional ionic heterogeneity was assigned
according to Roney et al..[1] This included additional scal-
ing in the left appendage (GKr*1.6, GNa*2, GK1*0.8,
GCaL*0.318, Gto*0.335, factorGKur*0.5) and pulmonary
veins (Gto*0.375, GCaL*0.225, GKr*2.4, GKs*0.67, fac-
torGKur*0.5). Scar was modeled as an extracellular bath
with a conductivity of 0.05 S/m. Ionic models were pre-
paced for 1000 cycles at a cycle length of 500 ms. Pre-
paced cellular action potentials demonstrated stable APDs
and shapes. Arrhythmia induction was simulated via two
S1 pulses at 500 ms cycle length, followed by a burst of
10 stimuli. This protocol was repeated independantly for
S2 burst cycle lengths ranging from 140 ms to 210 ms in
10 ms increments. Each of these 8 pacing protocols was re-
peated at 9 pacing sites defined across the left atrium using
universal atrial coordinates, for a total of 72 pacing scenar-
ios. Continued electrical activity at 2 seconds past the final
pacing was considered an induced re-entrant arrhythmia.
Scar Identification Automated scar assessment was per-
formed using each of the following: Image intensity ratio
(IIR, scar threshold of 1.6), standard deviation of the wall
(STD-wall, scar threshold of 3 standard deviations above
mean), and standard deviation of the blood pool (STD-bp,
scar threshold of 3 standard deviations above mean). We
followed the implementation details outlined in the litera-
ture to derive the LGE-cMRI threshold for each patient for
each automated scar identification method.[3–6] Human-
guided scar identification consisted of allowing an expert
to select the LGE threshold to classify the regions of the
atria into scar and non-scar. Observers were shown the
following for each case: the LGE intensity mapped to the
750 µM resolution atrial model, a histogram of the LGE
intensity values, the anatomy and ablation tags from the
patient’s atrial ablation procedure, and an atrial geometry
with a binary mask of scar and non-scar for the selected
threshold. The experts could rotate both the LGE model
and the ablation lesion model, and used a sliding scale
to select the LGE intensity threshold that identified only
dense scar related to atrial ablation. A total of four ob-
servers participated. Subjects were presented in random
order. Observers were blinded to all other aspects of the
study, including the threshold selected by the automated
methods, MRI quality, ablation outcome, and simulation
outcome.

In all methods (automated or human-guided), an LGE-
cMRI intensity threshold was identified. The LGE-cMRI
intensity was mapped from MRI image space onto both the
coarse and fine meshes for each subject via median map-
ping to the mesh node from the centroid of the nearest 10
MRI image voxels. Median of 10 nearest voxel values was
chosen as a balance between computational efficiency and
reduction of the effect of registration and segmentation er-
rors, which could erroneously include high-intensity struc-
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Figure 1: DICE coefficient of identified scar regions averaged over
all 50 subjects. DICE of 1 (dark blue) indicates perfect overlap, and 0
(white) indicates no overlap.

tures near the left atrium, such as the aorta. All LGE inten-
sity mappings were manually inspected, and segmentation
or meshes were adjusted as needed to address noticeable
mapping artifacts. Region identifiers were mapped from
nodes to elements via integer median mapping of element
node values.

To further reduce the effects of registration and segmen-
tation errors of the myocardial wall (which is often only
one or two voxels thick), we converted partial-thickness
scars in the simulation meshes (250 µM resolution) into
full transmural scars using the universal atrial transmural
coordinate.
Scar comparisons Scar identification was compared us-
ing the DICE-Sørenson coefficient of scar volume between
each method and/or observer using the 750 µM meshes.
Additionally, simulations were run on a subset (4) of sub-
jects as described above, one for each scar identification
method or observer. The number of sustained re-entries
observed in the simulations was compared across all sce-
narios. Scar patterns were also compared qualitatively via
visual examination.

3. Results

We found that automated methods differed in the scar
volumes they identified, both among themselves and when
compared to human-guided scar identification. Human-
guided scar identification was more consistent between
observers. Figure 1 highlights the higher average agree-
ment between human-to-human scar identifications (DICE
scores above 0.7, often above 0.75). Human observers
showed low average agreement with both IIR, and the
STD-wall method (DICE below 0.52 on average), and
slightly higher agreement with the STD-bp method (av-
erage DICE between 0.66 and 0.76). Figure 2 shows a
single subject example in which the scar distribution is
well matched between human subjects, and compared to
humans, it is under-estimated in the IIR method, over-

Table 2: Number of re-entrant arrhythmias induced across all pacing
scenarios for each scar identification method in four subjects.

Method Subject 1 Subject 2 Subject 3 Subject 4

Observer 1 0 6 10 3
Observer 2 0 7 9 5
Observer 3 0 12 9 4
Observer 4 3 9 9 1

IIR 0 10 10 2
STD Wall 0 1 9 0
STD BP 3 10 11 1

estimated in the STD-wall method, and slightly over-
estimated in the STD-BP method.

Simulations were sensitive to scar distribution, showing
differences in the number of arrhythmia events between
scar identification methods as seen in Table 2. While some
subjects showed higher (Subject 2 and 3) or lower (Subject
1 and 4) overall propensity for arrhythmia, there was no
explicit agreement between identified scar patterns on the
number of induced arrhythmias.

4. Discussion and Conclusions

We identified substantial disagreement between human
and automated methods in identifying LGE-cMRI scar pat-
terns, as well as high sensitivity in the downstream model-
ing of arrhythmogenesis to the selected scar pattern. Our
results highlight the difficulty of producing robust and re-
liable patient-specific computational models for atrial fib-
rillation. LGE-cMRI is a standard input data modality for
modeling studies, yet few explore the effects of process
errors and uncertainties on the downstream modeling out-
puts.[8] In addition to the impact on simulated arrhythmo-
genesis of the models noted in these results, we also ob-
served variability in the arrhythmia path and pattern across
scar distributions, possibly impacting downstream use of
the model to guide ablation procedures prospectively.

Numerous modeling assumptions and parameter choices
in patient-specific computational models can influence re-
ported simulation outcomes, underscoring the need for fur-
ther uncertainty quantification and simulation studies. Fu-
ture work will focus on characterizing and reducing model
uncertainty while expanding the parameter space—such
as incorporating fibrosis—to improve physiological real-
ism. We will also investigate how variability in arrhyth-
mia outcomes impacts the determination of optimal ab-
lation strategies, helping assess the clinical reliability of
these modeling approaches.
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Figure 2: Comparison of identified scar regions across each observer or method.
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